
A vision-based external localization and automatic evaluation system
for mobile robots localization

Juan I. Alonso-Barba∗, Alejandro Jiménez-Picazo†, Ismael Garcı́a-Varea‡, Jesus Martı́nez-Gómez§
Email: JuanIgnacio.Alonso@uclm.es∗, ajimenez@dsi.uclm.es†, Ismael.Garcia@uclm.es‡, Jesus.Martinez@uclm.es §

Computing System Department
University of Castilla-La Mancha

Albacete, Spain

Abstract— In this paper we present a system of external
localization that enables localization of mobile robots in an
arbitrary real space. The purpose of the system is to perform a
real-time calculation of the current position and orientation
of a mobile robot in different working environments (e.g.
the different scenarios of the RoboCup competition). A real
application of the system is the automatic evaluation of a specific
localization algorithm without the need for human intervention.
The system has been developed with the capability to manage
an arbitrary number of cameras, and it has been tested in a
real environment for different mobile robots and localization
algorithms. As a result, a considerable saving of time in the
development and validation of a localization algorithm has been
achieved. In addition, the proposed system provides an error-
free automatic evaluation system of localization algorithms for
mobile robots thus doing away with manual evaluations.

Index Terms— Vision-based external localization, automatic
evaluation of systems, mobile-robot localizationVision-based
external localization, automatic evaluation of systems, mobile-
robot localization

I. INTRODUCTION

One of the main problems in developing localization
algorithms for mobile robots is how to evaluate the
performance of such algorithms. This evaluation consists of
comparing the pose (position x, y and orientation θ in a 2D
space) obtained by the localization algorithm to be tested and
the current pose of the robot in a real environment.

There exists two types of localization methods:

• Active localization (external localization): An external
system is used to estimate the pose of the robot, for
example a GPS device. In [8] an external localization
system using landmarks is proposed.

• Passive localization (self localization): The robot has to be
able to calculate its location without the help of any ex-
ternal devices. Some examples of self localization methods
are: Kalman filters [13], [12], [14], Markov models [10],
[11], Monte Carlo methods [15], among others.

For autonomous robot challenges (i.e. Robocup competitions)
only passive methods can be used. In these cases, during the
development of self localization algorithms, it is worthwhile
and helpful to have an automatic and error-free evaluation
process at one’s disposal.

Typically, in the absense of an automatic evaluation system,
the assessment of a localization algorithm is carried out
manually. That is, every time a pose estimation is required,
the human operator has to measure and record the current
pose in order to systematically compare them afterwards.

Manual evaluation of a localization algorithm entails differ-
ent problems:

• The localization results can be biased by errors in the
manual measurements.

• It is difficult, even unfeasible, to make a comparison
with respect to other localization algorithms. For example,
when a predefined robot tour is to be tested.

• The development time for new localization algorithms is
substantially greater as the robot has to be stopped for
each manual measurement.

All these drawbacks can be avoided if an automatic
evaluation system is used [9]. Obviously, we believe that each
research group has their own automatic evaluation system
for the localization algorithms they have proposed. Despite
this, and to the best of our knowledge, no generic automatic
evaluation system has been proposed for this purpose in the
literature.

In this paper we present a vision-based framework to
develop an external localization system for mobile robots, as
well as an automatic evaluation system for passive localization
algorithms.
Automatic evaluation is performed by means of real-time
computation of the current localization of the robots.

The remainder of this paper is organized as follows. In
section II a description of a generic system architecture is
presented. Section III describes a case study consisting of the
specific system we have implemented in our laboratory, as wells
as the experiments we carried out to test the system. Section IV
presents the main conclusions and future developments.

II. GENERAL SYSTEM DESCRIPTION

In this section a description of an external localization system
is given.

In general, an external localization system must be able to:

• Manage an arbitrary number of cameras connected to the
system.

• Detect any kind of mobile robots.
• Establish a communication procedure between the system

and the robots.
Taking into account these requirements whilst aiming to

facilitate the development and increase the modularity of the
system, we propose to divide the system into the following
modules: 1) camera management module; 2) robot detection
module; 3) communication module; 4) image processing
module (optional).

The camera management module is used to access and
gather data from all the cameras connected to the system.
The number of cameras and their localization define the space

where the system can detect the robots. The system may use an
arbitrary number of visual cameras connected to a computer
that analyses the captured images to calculate the position
and the orientation of the robots. The main advantage of this
system is that web cameras are very cheap and the real space
that can be covered by the system increases linearly with the
number of cameras. Thus, the scalability of the system is only
limited by the number of cameras that our computer can
manage at the same time. If only one camera is used, it will
not be possible to find the robot in a big area, but if too many
cameras are used a very powerful computer will be needed to
work with the data in real time. The same happens with the
resolution of the cameras: a high resolution allows the system
to find the robot easily but this is computationally expensive.

The objective of the robot detection module is to detect the
position (x, y) and the orientation θ of the robot in one specific
image frame. After analysing some image processing libraries
and some different algorithms to detect and track objects
based on shape detection [7], colour detection [17] or mark
detection [1], [2] we suggest the use of one based on mark
detection, but any could be used. Mark detection libraries can
easily detect any kind of robot simply by placing a specific
mark on the robot in question. Moreover, it is possible to use
different marks to detect different robots or more than one
mark on the same robot to increase the precision of the system.

The communication module is used to send and receive
localization data between the system and the robot. This
module allows the system to compare the results obtained from
the system with the ones sent by the robot. The result of this
comparison is used to develop an autolocalization algorithm.

The image processing module is optional and only used for
debug purposes. This module is mainly used to graphically
represent the information that the system is using. The main
task of this module is to draw, in a user interface (UI), the
pictures received from the cameras, the results of the robot
detection module and the robot autolocalization information if
it is available.

III. A CASE STUDY: THE SIMD EXTERNAL
LOCALIZATION AND AUTOMATIC EVALUATION SYSTEM

In this section we present the system that we have developed
and implemented in our research laboratory (SIMD1),
following the requirements and the structure set out in the
previous section.

The global architecture of the system is depicted in Fig. 1.

A. Camera management module
To manage the cameras we used the free software library

VideoInput [6]2. This library is based on OpenGL [16] and
DirectX [3]3.

Our system manages a total of four cenital cameras, which
are connected to the computer running the application. In our
case, four cameras are enough to cover all the environment
in which the robots can freely move. VideoInput allows the
use of up to twenty cameras simultaneously.

1Data Mining and Intelligent Systems Lab. (www.dsi.uclm.es/simd)
2VideoInput library has been developed only for MS-Windows based

systems
3DirectX Microsoft DirectX is a collection of application programming

interfaces (APIs) for handling tasks related to multimedia, especially game
programming and video, on Microsoft platforms

Fig. 1. System architecture

The VideoInput library has to be configured according to a
set of parameters which define the image resolution, the colour
space (RGB/BGR), the video format (NTCS/PAL/SECAM),
and whether the images are stored flipped or not. All
these parameters have to be correctly defined by the
user/programmer according to the specific hardware (cameras)
used.

B. Robot detection module
For this module we have used the open source mark

detector library ARToolKitPlus [18]. ARToolKitPlus is a
software library that can be used to calculate camera position
and orientation relative to special physical markers in real
time, and vice versa.

In our case we are interested in obtaining the position and
orientation of a physical mark, which will be placed in the
middle and highest part of the robot, from one (or more) fixed
camera(s).

ARToolkitPlus works as follows: when a physical mark is
detected the confidence measure (from 0 to 1, this value giving
a measure of the confidence of the system seeing the mark) and
the model view matrix of the mark are returned. The model
view matrix describes the position and orientation of the mark
in the 3D camera coordinates reference system, which is auto-
matically converted to the 2D screen/image coordinates system.
That is, the center of the image (position (0,0)) corresponds to
the axis (0,0,Z) in the camera coordinates reference system. A
graphical description is shown in Fig. 2. The orientation is also
computed with respect to the (0,0,Z) axis.

C. Communication module
Wireless communication is used to establish and manage

communication between the system and the robots. Wireless
networks are very common today and most robots include
a wireless interface. We use standard TCP sockets for
communication, so the system should be compatible with any
robot.

The operation of the system is as follows. The robot sends
the result of its localization algorithm to the system. Then, the
system analyzes and compares the received data with the value
returned by the robot detection module.

Fig. 2. Coordinates system of Artoolkit+

D. Image processing module

For the image processing module we have used the OpenCV
library [4]. OpenCV is a well-known and widely-used open
source Computer Vision library. We chose this library because
it provides an easy way to show and modify the images taken
by the cameras [5].

The main use of this module is to show the images taken by
the cameras in a user interface. It also represents the current
position of the detected robot (given by the robot detection
module) with a colour mark over it. Furthermore, if the robot
has sent its localization data to the communication module it
is also represented with another colour mark.

Figure 3 shows an example of the output of the module. The
module shows the images received by the four cameras and a
color mark is drawn on the estimated position of the robot.

Fig. 3. SIMD laboratory picture

E. Scenario Overview

In this section we describe the real scenario where the
system is working. The area where the system is able to detect
robots is defined by the cameras connected to the system.
We use four FireWire cameras with a resolution of 320x240
pixels and 24bits of colour. The cameras were installed on
the ceiling of our laboratory and form a perpendicular angle
with it (Fig. 4). The area covered by the cameras is about
4x3 m2. To combine the localization data obtained from all
the cameras it is necessary to know the distance between the
cameras connected to the system.

Fig. 4. Real scenario. In the picture, the camera positions are highlighted
with red circles, and the physical mark of the robot with a green circle.

In our case we chose a square distribution and thus we cover
a large square area combining the pictures taken from all
cameras. The system takes the point on the ground vertically
bellow the first camera as the origin of the reference system
(see Fig. 5).

The mark detection module returns the mark positions in
cm but this position is local to each camera.

Fig. 5. Initial reference system

It is possible to modify the global origin and move it to any
place in the reference system. To do this it is only necessary to
put one mark at the new origin and to store the coordinates
< x, y > of the mark in the system. For example, if we want to
set the origin of the reference system in the upper left corner,
we need to place a mark at this site, take the position returned
by the system and store it in the origin correction variable
defined in the system (see Fig. 6).

Fig. 6. Reference system based on a fixed point

F. Experimental results
First of all we adjusted the parameters of the camera

(focus, brightness, saturation, etc.) and selected the right size
of mark to get good results according to the distance between
the ceiling and the floor. In our case, marks of 19x19cm were
enough to detect them correctly.

To test our system, we drew a grid which divides the floor
into 20x20cm squares and we set the initial position (0,0) in
the top left corner of the grid. We started using only one
mark, and we moved it around all the corners of the grid. We
checked that the value returned by the system corresponded
to the position in the real world. Next, we put four different
marks at random corners of the grid several times and checked
that all of them were correctly detected. In all the cases, the

algorithm detected the correct mark and the error was always
less than 2 cm.

In addition, three random tours for two different robots (an
ER1 and an ERSP Scorpion) were used to test the system. Every
second the current position was estimated by our system and
was stored together with the images taken by the camera. Later,
we manually checked the correspondence between the positions
estimated by the system and the images taken for each point,
showing that all the estimated positions corresponded with the
real ones.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an external localization and
automatic evaluation system for robot localization algorithms.
This system considerably reduces the time needed to develop
a generic self-localization algorithm and it avoids the need
to make manual measurements in order to evaluate its
performance. In this way the system avoids typical human and
manual measurement errors.

We have presented a common architecture to implement
an external localization system based on web cameras. The
system architecture proposed follows a modular definition.
This makes it possible to develop each module independently,
providing a flexible, easily modifiable and a scalable system.

In our case, we have implemented a system that can work
with up to twenty cameras simultaneously. The system is able
to detect any kind of element that the Robot Detection Module
can find and estimate its position in real space using a mark
detection library. Communication with the robot is performed
using standard TCP sockets, so any robot that has a network
interface is able to exchange localization data with the system.

To sum up, we have implemented a complete and robust
external localization system that defines a general framework
for developing and automatically evaluating self-localization
algorithms to be used in mobile robots.

For the future we have in mind the modification of the robot
detection module in order to allow the use of cameras placed
in any position of the scenario, not only on the ceiling.

REFERENCES

[1] “ARToolKit: Augmented Reality Tracking Library, http://www.
hitl.washington.edu/artoolkit/.”

[2] “ARToolKitPlus: Augmented Reality Tracking Library (phase
2), http://studierstube.icg.tu-graz.ac.at/handheld ar/artoolkitplus.
php.”

[3] “DirectX 9.0 SDK, http://www.microsoft.
com/downloads/details.aspx?FamilyID=
77960733-06e9-47ba-914a-844575031b81&DisplayLang=en.”

[4] “OpenCV. Intel Open Source Computer Vision Library. http://
opencvlibrary.sourceforge.net/.”

[5] “Programming computer vision applications, http://www.site.
uottawa.ca/∼laganier/tutorial/opencv+directshow/cvision.htm.”

[6] “VideoInput, devenloped by Theodore Watson, http://muonics.net/
school/spring05/videoInput/.”

[7] R. L. Achtman, R. F. Hess, and Y.-Z. Wang, “Sensitivity for global
shape detection,” Journal of Vision, vol. 3, no. 10, pp. 616–624,
10 2003. [Online]. Available: http://journalofvision.org/3/10/4/

[8] R. Baczyk, A. Kasinski, and P. Skrzypczynski, “Vision-based
mobile robot localization with simple artificial landmarks,” in
Procs. of 7th IFAC Symp. on Robot Control, S. P. E. Baczyk R.,
Kasinski A., Ed., Wroclaw, Poland, 2003, pp. 217–222.

[9] B. Bonev, M. Cazorla, F. Martı́n, and V. Matellán, “Portable
autonomous walk calibration for 4-legged robots,” Applied Intel-
ligence, pp. 1–12.

[10] D. Fox, W. Burgard, and S. Thrun, “Active markov localization
for mobile robots,” pp. 195–207, 1998.

[11] ——, “Markov localization for mobile robots in dynamic envi-
ronments,” Journal of Artificial Intelligence Research, vol. 11, no.
391-427, p. 27, 1999.

[12] L. Freeston, “Applications of the kalman filter algorithm to robot
localisation and world modelling,” School of Electrical Engineering
and Computer Science, The University of Newcastle, June, 2002.

[13] P. S. Maybeck, The Kalman filter: An introduction to concepts.
Springer-Verlag New York, Inc., 1990.

[14] R. R. Negenborn, “Kalman filters and robot localization,” Master’s
thesis, Institute of Information and Computer Science, Utrecht
University, Utrecht, Netherlands, 2003. [Online]. Available:
citeseer.ist.psu.edu/negenborn03kalman.html

[15] T. Rofer and M. Jungel, Vision-based fast and reactive Monte-Carlo

localization, 2003.
[16] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL(R)

Programming Guide: The Official Guide to Learning OpenGL(R),
Version 2 (5th Edition). Addison-Wesley Professional, August
2005. [Online]. Available: http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20\&path=ASIN/0321335732

[17] I. Ulrich and I. R. Nourbakhsh, “Appearance-based obstacle
detection with monocular color vision,” in Proceedings of the AAAI
National Conference on Artificial Intelligence, Austin, TX, 2000, pp.
866–871.

[18] D. Wagner and D. Schmalstieg, “ARToolKitPlus for pose tracking
on mobile devices,” in Proceedings of the 12th Computer Vision
Winter Workshop (CVWW’07), 2007.

